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Ensemble Kalman Filter:
status and new ideas

 EnNKF and 4D-Var are in a friendly competition
o Jeff Whitaker results: EnKF better than GSI

e |In Canada: 4D-Var & EnKF the same in the NH
and EnKF is better in the SH

 ENKF needs no adjoint model, priors, it adapts
to changes in obs, it can even estimate ob errors

* We take advantage of ideas and methods
developed for 4D-Var and easily adapt them into
the LETKF (Hunt et al., 2007)
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Current comparisons:
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Single observation experiments
Difference in temporal covariance evolution
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Forecast Results — 120h NH

4D-Var Benkf

EnKF mean analysis
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Forecast Results — 120h SH

4D-Var Benkf

EnKF mean analysis
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Conclusions from a clean
intercomparison of 4D-Var and EnKF
(Buehner et al., Canada, 2008)

v When running with the same (inner loop)
model, same observations the forecast scores
of 4D-Var and EnKF, are essentially identical
(February 2007).

v When By in 4D-Var replaced by B «r 4D-
Var AC improved in the SH by 10 hours

v They will run an incremental EnKF (hi-res) so
the control models have same resolution! -



pressure (hPa)

Whitaker: Wind O-F 3-9hr statistics (all in situ data

aggregated in 100 mb layers, 20071208-20080131)

Vector Wind O-F

Northern Hemisphere
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e EnKF significantly better in Tropics, SH above
boundary layer, NH upper trop and strat.



pressure (hPa)

Whitaker: 48-h wind forecasts verified
against operational ECMWF analyses

Vector Wind 48-h RMS Error (relative to ECWMF analyses)
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Conclusions from a clean comparison of
GSI| and EnKF (Whitaker, Dec 08)

v’ At T126/L64 resolution - 64 members - EnKF is clearly better
than the operational GSI| (same resolution) and it now takes only 4
times longer

v Will test incremental EnKF at T382/L64

Conclusions from a clean comparison of
JMA 4D-Var and LETKF (Miyoshi et al. 08)

v’ At the same resolution LETKF is faster than the operational
4D-Var, better in the tropics and NH, worse in SH due to a model

bias
v Will test simple low-dim method to correct model bias 0



Some ideas to improve LETKF/EnKF

We can adapt ideas developed within 4D-Var:

v No-cost smoother (Kalnay et al, Tellus 2007)

v' “Outer loop” and nonlinearities (Yang and Kalnay)

v" Accelerating the spin-up (Kalnay and Yang, QJ, subm.)

v' Forecast sensitivity to observations (Liu and Kalnay, QJ, 2008)

v Coarse analysis resolution without degradation (Yang, Kalnay, Hunt, Bowler,
QJ, in press)

v Low-dimensional model bias correction (Li, Kalnay, Danforth, Miyoshi,
MWR, submitted)

v Simultaneous estimation of optimal inflation and observation errors (Li,
Kalnay, and Miyoshi, QJ, in press).
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Some ideas to improve LETKF/EnKF

We can adapt ideas developed within 4D-Var:

v No-cost smoother (Kalnay et al, Tellus 2007)

v" “Outer loop” and nonlinearities (Yang and Kalnay)

v" Accelerating the spin-up (Kalnay and Yang, QJ, subm.)

v Forecast sensitivity to observations (Liu and Kalnay, QJ, 2008)

v Coarse analysis resolution without degradation (Yang, Kalnay, Hunt,
Bowler, QJ, in press)

v Low-dimensional model bias correction (Li, Kalnay, Danforth, Miyoshi,
MWR, submitted)

v Simultaneous estimation of optimal inflation and observation errors (Li,
Kalnay, and Miyoshi, QJ, in press).

EnKF is new, simple, flexible, and there is a
whole community eager to test new ideas



[Local Ensemble Transtform Kalman Filter
(Ott et al, 2004, Hunt et al, 2004, 2007)

(Start with initial ensemble)

Observations

l

Observation ensemble

operator “observations

T ensemble [analyses

Model

ensemble forecasts

* Model independent
(black box)

 Obs. assimilated
simultaneously at each
grid point

* 100% parallel: very fast
* No adjoint needed

* 4D LETKEF extension

13



Localization based on observations

Perform data assimilation in a local volume, choosing observations
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Localization based on observations

Perform data assimilation in a local volume, choosing observations

The state estimate is updated at the
central grid red dot

All observations (purple diamonds)
within the local region are assimilated

The LETKF algorithm can be described in a single slide! .



Local Ensemble Transform Kalman Filter (LETKF)

Globally:
b a
Forecast step: X~ M, X, 1k
Analysis step: construct b _ | 0 _ %P b _ gt |.
y P X —I:Xl—X ... Ix, —X ],

Yy, =H&):Y, =]y -¥ .1y, -¥"]

Locally: Choose for each grid point the observations to be used, and

compute the local analysis error covariance and perturbations in
ensemble space:

P=[(K-DI+Y R'Y' ] ; W =[(K - 1)P*]"

Analysis mean in ensemble space: W' =P YR (y’ —y")
and addto W¢“ to getthe analysis ensemble in ensemble space

The new ensemble analyses in model space are the columns of

X" = X’le“ +X” . Gathering the grid point analyses forms the new
global analyses. Note that the the output of the LETKF are analysis
weights W* and perturbation analysis matrices of weights W¢. These
weights multiply the ensemble forecasts. 16



Analysis time

4D-LETKF

tn -1 tlme tn

The 4D-LETKF produces an analysis in terms of
weights of the ensemble forecast members at the
analysis time t, giving the trajectory that best fits all

the observations in the assimilation window.
17



No-cost LETKF smoother (x): apply at t__, the same
weights found optimal at t.. It works for 3D- or 4D-LETKF

4D-LETKF

L, time t

We can get the smoothed mean analysis (used for the
outer loop) and the smoothed analysis error
covariance (used for “Running in Place” to deal with
spin-up)

18



No-cost LETKF smoother
test on a QG model: It works!

Analysis error of potential vorticity

LETKEF analysis
tti x‘ =X +X/w*
attme 7 o e @ LETKF Analysis
Smoother analysis _, < Z “Smoother” reanalysis
at time n-1 X1 T AW, B
10 20 30 40 D 50 80 70

This very simple smoother allows us to go back
and forth in time within an assimilation window:
it allows assimilation of future data in reanalysis®



Nonlinearities and “outer loop”

The main disadvantage of EnKF is that it cannot handle
nonlinear (non-Gaussian) perturbations and therefore needs
short assimilation windows.

It doesn’t have the important outer loop so important in 3D-
Var and 4D-Var (DaSilva, pers. comm. 2006)

Lorenz -3 variable model (Kalnay et al. 2007a Tellus), RMS
analysis error

4D-Var LETKF
Window=8 steps  0.31 0.30 (linear window)
Window=25 steps 0.53 0.66 (nonlinear window)

Long windows + Pires et al. => 4D-Var clearly wins! 20



“Outer loop” in 4D-Var

Incremental 4D-Var

Ig = Ty

x; —— — —»  High resolution nanlinear trajectory

=
£
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* ] [
E‘ Low resolution linear model — ]
=
E Low resolution adjoint model —
| Iterative minimisation algorithm
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Nonlinearities and “outer loop”

Outer loop: similar to 4D-Var: use the final weights to
correct only the mean initial analysis, keeping the initial
perturbations. Repeat the analysis once or twice. It
centers the ensemble on a more accurate nonlinear
solution.

Miyoshi: Jaszwinski (1970) also suggested this “inner loop” in a footnote!

Lorenz -3 variable model RMS analysis error

4D-Var LETKF LETKF
+outer loop
Window=8 steps  0.31 0.30 0.27
Window=25 steps 0.53 0.66 0.48

“Running in place” further reduces RMS from 0.48 to 0.39!
22



“Running in place” to spin-up faster
Kalnay and Yang (2008)

* 4D-Var spins-up faster than EnKF because it is a smoother: it
keeps iterating until it fits the observations within the
assimilation window as well as possible

* EnKF spins-up fast if starting from a “good” initial state, e.g.,
3D-Var, but needs also an ensemble representing the “errors of
the day”

* |n a severe storm where radar observations start with the
storm, there is little real time to spin-up

» Caya et al. (2005): "EnKF is eventually better than 4D-Var”
(but it is too late to be useful, it misses the storm).

* Jidong Gao, (pers. comm. 2007): spin-up is the main obstacle
for the use of EnKF for storm prediction.

23



Can we use the data more than once?

* Hunt et al., 2007: The background term represents
the evolution of the maximum likelihood trajectory
given all the observations in the past

T R;l [y‘]’ — Hth,,,th:| =[x — ii]T (P:)_1 [x — iz] +c

n—1

Z[yj — Hthanx

j=1

* After the analysis a similar relationship is valid:
[x-x ] (w) [x=x e[y -] (R)) Ly -mx]=[x=x ] (pr) [x-x] e

* From here one can derive the linear KF equations
* Also the rule: “Use the data once and then discard it”

24



“Running in Place”: like the outer loop
but updating also the covariance

* EnKF is a sequential data assimilation system where, after the
new data is used at the analysis time, it should be discarded...

* only if the previous analysis and the new background are the
most likely states given the past observations.

* If the system has converged after the initial spin-up all the
information from past observations is already included in
the background.

* During spin-up we should use the observations repeatedly
if we can extract extra information. But we should avoid
overfitting the observations 25



Running in Place algorithm

Cold-start the EnKF from any initial ensemble mean and random
perturbations at t,, and integrate the initial ensemble to ¢,. The
“running in place” loop with n=1, is:

a) Perform a standard EnKF analysis and obtain the analysis weights at ¢,,

saving the mean square observations minus forecast (OMF) computed by the
EnKF.

b) Apply the no-cost smoother to obtain the smoothed analysis ensemble at f,
, by using the same weights obtained at ¢,.

c) Perturb the smoothed analysis ensemble with a small amount of random
Gaussian perturbations, similar to additive inflation.

d) Integrate the perturbed smoothed ensemble to ¢,. If the forecast fit to the
observations is smaller than in the previous iteration according to some
criterion, go to a) and perform another iteration. If not, let 7, , «<— ¢, and

proceed to the next assimilation window.
26



Running in Place algorithm (notes)

Notes:

c) Perturb the smoothed analysis ensemble with a small amount
of random Gaussian perturbations, a method similar to
additive inflation.

This perturbation has two purposes:
1) Avoid reaching the same analysis as before, and
2) Encourage the ensemble to explore new unstable directions

OMEF” (iter) — OMF* (iter + 1) o e
OMF* (iter)

d) Convergence criterion: if

with €~5% do another iteration. Otherwise go to the next

assimilation window. -



Results with a QG model

Analysis error of potential temperature

T I T T T I T T
0 = LETKF (no RIP, random initial ensemble)
10 - = = LETKF (with RIP, random initial ensemble]
- LETKF (no RIP, B3DV initial ensemble)
= = = LETKF (with RIP, B3DV initial ensemble ]|
= AD-Var
s = =4 3D-Var
510"
t
()
(2]
=
o
107}
| | | |

| | | 1 |
20 40 60 80 100 120 140 160 180 200
DA cycles

Spin-up depends on initial perturbations, but RIP works well even with
random perturbations. It becomes as fast as 4D-Var (blue). RIP takes ggly 2-

4 iterations.



Results with a QG model

LETKF LETKF Variational
Random initial ensemble B3DV initial ensemble
. ) 3D-Var 4D-Var
No RIP With RIP No RIP With RIP B3DV 0.05B3DV
Spin-up:
DA cycles
to reach 141 46 54 37 44 54
5% error
RMS
(Xloe.‘;r)"" 0.5 0.54 0.5 0.52 1.24 | 0.54

LETKF spin-up from random perturbations: 141 cycles. With RIP: 46 cycles

LETKF spin-up from 3D-Var perts. 54 cycles. With RIP: 37 cycles

4D-Var spin-up using 3D-Var prior: 54 cycles.

29




Estimation of forecast sensitivity to

observations without adjoint in an
ensemble Kalman filter

Junjie Liu and Eugenia Kalnay
QJRMS October 2008
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Motivation: Langland and Baker (2004)

AQUA sensitivity specified by channel number: Aug

AIRS shortwave 4.180 um
AIRS shortwave 4.474 uym

AIRS longwave 14-13 ym
e AMSU/A

-0.4 -0.2 0.0 0.2

Beneficial Non-beneficial

» The adjoint method proposed by Langland and Baker (2004) and Zhu and
Gelaro (2007) quantifies the reduction in forecast error for each individual
observation source

» The adjoint method detects the observations which make the forecast worse.

» The adjoint method requires adjoint model which is difficult to get. 31



Schematic of the observation impact on the reduction of
forecast error

i —t}
€6 = X6 — X,
€ o
etIO €0 =X X
Adapted from Langland
BS. (Adap g

and Baker, 2004)

-6hr  00hr analysis t

The only difference between €,,and €,_gis the assimilation of observations at 00hr.

1

T T
» Observation impact on the reduction of forecast error: J = —(eﬂoetlo — et|_6et|_6)
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The ensemble sensitivity method

1
Euclidian cost function: ~ J = E(ezoetlo —-el e ) v,=y —hX
| | dJ
Cost function as function of obs. Increments: J = Vo,a—
\
0

The sensitivity of cost function with respect to the assimilated observations:
aJ T ~
T f
v [K X, 6][% ot X 0V0]
Vo

With this formula we can predict the impact of observations on the forecasts!

33



Test ability to detect the poor quality observation on
the Lorenz 40 variable model

Observation impact from LB (red) and from ensemble sensitivity method (green)

Larger random error Biased observation case
0.025 0.025 1
0.02 0.02
0.015 A 0.015+
0.07 0.07
0.005 A 0.005

0.005 +o~T —0.005 +3+T
001 —0.01-
~0.0151 -0.0151
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
grid points grid points

v’ Like adjoint method, ensemble sensitivity method can detect the observation
poor quality (11t observation location)

v' The ensemble sensitivity method has a stronger signal when the observatlon has
negative impact on the forecast.



Summary for forecast sensitivity to obs.

 Derived a formula to calculate the observation impact based on the
ensemble without using the adjoint model which usually is not available.

* The results based on Lorenz-40 variable model show that ensemble
sensitivity method without using adjoint model gives results similar to adjoint
method .

» Like adjoint method, ensemble sensitivity method can detect the
observation which either has larger random error or has bias. Under such
conditions, the ensemble sensitivity method has stronger and more accurate
signal.

e |t provides a powerful tool to check the quality of the observations.
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Coarse analysis with interpolated weights
Yang et al (2008)

In EnKF the analysis is a weighted average of the forecast ensemble

We performed experiments with a QG model interpolating weights
compared to analysis increments.

Coarse grids of 11%, 4% and 2% interpolated analysis points.
Weight fields vary on large scales: they interpolate very well

® + + @& + + @ + + @
+ + + + + + + + + +
+ + + + + + + + + +
® + + @ + + @ + + ©
+ + + + + + + + + +
+ + + + + + + + + +
® + + O + + O + + ©
+ + + + + + + + + +
+ + + + + + + + + +
® + + O + + @ + + @

1/(3x3)=11% analysis grid -



Weight interpolation versus Increment interpolation

ANALYSIS INCREMENTS FROM WEIGHTS INTERPOLATION

(a) Full Analysis (b} 11% Analysis grids (c) 4% Analysis grids (d) 2% Analysis grids
32 gaae S 0.03
0.024
28 0.018
24 0.012
20 0.006
16 0
12 -0.008
-0.012
8 -0.018
: > 5%
4 12 20 28 36 44 52 60 4 12 20 28 36 44 52 60 4 12 20 28 36 44 52 60 4 12 20 28 36 44 52 60 '
ANALYSIS INCREMENTS FROM INCREMENTS INTERPOLATION (FROM FULL ANALYSIS)
{e) 50% Analysis grids (f) 11% Analysis grids (g) 4% Analysis grids (h) 2% Analysis grids
. = 32F 32 0.03
| 0.024
28
0.018
24 0.012
20 L 0.006
16 0
12 -0.006
-0.012
8 -0.018
A _ 4 -0.024
-0.03

4 12 20 28 36 44 52 60 4 12 20 28 36 44 52 60 4 12 20 28 36 44 52 60 4 12 20 28 36 44 52 60

With increment interpolation, the analysis is OK only with 50%
analysis coverage

With weight interpolation, there is almost no degradation!
LETKF maintains balance and conservation properties sz



Impact of coarse analysis on accuracy

Analysis error of potential vorticity

| 128 observations (6% coverage)
0.014 1 |
| —— LETKF-Full Resolution (100%)
0.0131 j —= LETKF ~[nterpolated Weights (11%)
| == LETKF -Interpolated Weights 4%}
0.012- — = LETKF ~Intarpolated Weights (2%
1
i | —— LETKF -Interpolated Ana_inc (50%g*
0011 -~ LETKF —I[nterpolated Ansa_inc (25%)*
: ' — - LETKF -Interpalated Ana inc (11%)*
| 3DVar—-Full Resolution (100%) _
. 0.011 i t
o | , ';
£ 0.009] [ i | Y Loy
S | I N1 VR o LT ;
% 0.008 IR i W) B i
HART ' A i A
e Yy L | b ™A
0.007 i, : b T
0.006- 24
0.0051 i
0.004 -
0.0031
0.002 7 T T T T T T T T
20 40 60 80 100 120 140 160 180 200
Days

With increment interpolation, the analysis degrades

With weight interpolation, there is no degradatiop,
the analysis is actually better!



Model error: comparison of methods
to correct model bias and inflation

Hong Li, Chris Danforth, Takemasa Miyoshi,
and Eugenia Kalnay. QJ (in press)
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Model error: If we assume a perfect model in EnKF,

we underestimate the analxsis errors gLi, 20072

perfect model
simplified DdSM+
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— Why is EnKF vulnerable to model errors ?

Background ensemble spread

100

2004

300+ S. Forecast

N err
“~TJruth
~
~

~
~

400

~

» In the theory of Extended Kalman
filter, forecast error is represented by
the growth of errors in IC and the

—perfect model errors.

700+
800

» However, in ensemble Kalman filter,

900 error estimated by the ensemble
e A spread can only represent the first

type of errors.

500 1

PRESSURE [hPa]

(2]
o
o
1
~

— imperfect

The ensemble spread 1s ‘blind’
to model errors




We compared several methods to handle
bias and random model errors

perfect model
simplified DdSM+

ANALYSIS RMSE — - DdSM+ —— mulinf]

addinfl control run
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i U—wind RMSE (m/s) imperfect model

PRESSURE (hPa)

Low Dimensional Method to correct the bias (Danforth et al,4g007)
combined with additive inflation



Simultaneous estimation of EnKF inflation and
obs errors in the presence of model errors

Hong Li, Miyoshi and Kalnay (QJ, in press)

*Any data assimilation scheme requires accurate statistics for the
observation and background errors (usually tuned or from gut feeling).

» EnKF needs inflation of the background error covariance: tuning is
expensive

» \Wang and Bishop (2003) and Miyoshi (2005) proposed a technique to
estimate the covariance inflation parameter online. It works well if ob errors
are accurate.

» We introduce a method to simultaneously estimate ob errors and inflation.

=\We test the method for a perfect model and in the presence of model
random errors (it works very well) and model bias (not so well).
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Diagnosis of observation error statistics

Houtekamer et al (2001) well known statistical relationship:

omB*oMB <d_,d’  >=HP'H +R

Desroziers et al, 2005, introduced two new statistical relationships:

OMA*OMB < do_adf_b >— R
T byxT
AMB*OMB <d,,d _,” >=HP'H

These relationships are correct if the R and B statistics are correct and
errors are uncorrelated!

With inflation: HP’H' — HAP'H? with A>1
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Diagnosis of observation error statistics

Transposing, we get “observations” of A and ¢’

A° = (dz_bdo_b)—Tl’(R) OMBz
Tr(HP'H")
A= D% =)0 — ¥/ Tr(HP'H) AMBTOMB
j=1
~ \2 T A b
6, =d_d,_,/p=D)0"-yD)0=¥)/p  OMA*OMB

J=1

Here we use a simple KF to estimate both A and 63 online.
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SPEEDY model: online estimated observational
errors, each variable started with 2 not 1.

online estimating R
2.5 I | | | | | | | |

—uyind

— temperature ||
10000

— Ps/100

onlie observation error

5 15 20 2 30 ®» 4 45 50
Time Step

The original wrongly specified R converges to the
correct value of R quickly (in about 5-10 days)
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Estimation of the inflation

Estimated Inflation

&
R

o3k \"" i l‘

1 1 | | | 1 1
20 40 &0 B 100 120 140 180 180 200 220
Time steps

Using an initially wrong R and A but estimating them adaptively
Using a perfect R and estimating A adaptively

After R converges, the time dependent inflation factors are quite similar
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Tests with LETKF with imperfect L40 model:
added random errors to the model

Error A:true 62=1.0 B: true 6=1.0 | C: adaptiveo.
amplitude (tuned) constant A | adaptive A adaptive A
(random)

a A RMSE A RMSE | A RMSE 0'02

4 0.25 0.36 0.27 | 0.36 |0.39| 0.38 |0.93

20 0.45 0.47 0.41 | 0.47 |0.38| 0.48 |1.02

A A
100 1.00 0.64 0.87 | 0.64 [0.80|( 0.64 )| 1.05

The method works quite well even
with very large random errors!
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Tests with LETKF with imperfect L40 model:
added biases to the model

Error A:true 6.=1.0 B:truec>=1.0 | C: adaptiveo

amplitude

. (tuned) constant A | adaptive A adaptive A

(bias)
o A RMSE A RMSE | A RMSE| ¢’
1 0.35 0.40 0.31 | 0.42 |0.35| 0.41 |0.96
4 1.00 0.59 0.78 | 0.61 [0.77| 0.61 |1.01
7 1.50 0.68 1.11 | 0.71 |0.81((0.80Y)|1.36

The method works well for low biases, but
not for large biases: Model bias needs to be
accounted by a separate bias corrections



Summary

EnKF and 4D-Var now give similar results in Canada and in
JMA (except for model bias)(Buehner et al, Miyoshi et al)

EnKF is better than GSI with the same resolution model and
needs only 4 times more CPU (Whitaker)

EnKEF is simpler and more flexible than 4D-Var. Many new
ideas to further improve it have been tested in simple models:
Smoothing and running in place
A simple outer loop to deal with nonlinearities
Adjoint sensitivity without adjoint model
Coarse resolution analysis without degradation

Correction of model bias combined with additive inflation gives the
best results

Can estimate simultaneously optimal inflation and ob errors
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Has the time come to test EnKF in parallel?

EnKF and 4D-Var now give similar results in Canada and in
JMA (except for model bias)(Buehner et al, Miyoshi et al)

EnKF is better than GSI with the same resolution model and
needs only 4 times more CPU (Whitaker)

EnKEF is simpler and more flexible than 4D-Var. Many new
ideas to further improve it have been tested in simple models:
—  Smoothing and running in place
— A simple outer loop to deal with nonlinearities
— Adjoint sensitivity without adjoint model
—  Coarse resolution analysis without degradation

—  Correction of model bias combined with additive inflation gives the
best results

—  Can estimate simultaneously optimal inflation and ob errors
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Extra Slides on Low Dim Method
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2.3 Low-dim method (Danforth et al, 2007: Estimating and correcting global
weather model error. Mon. Wea. Rev, J. Atmos. Sci., 2007)

+ Generate a long time series of model forecast minus reanalysis X,
from the training period f

X
- : NNR
NNR R NN * i
- NNR -
: t=6hr :
:xf

We collect a large number of estimated errorsé and estimate from them bias, etc.

L M
81{+1 — X£+1 o X;+1 = M(XZ) _M(X;) + b + ﬁn,lel T 2 Yn,mfm
T [=1 \ m=1 \

\
Forecast error Time-mean Diurnal degéatc?ent
due to error in IC model bias model error mode?error 53



Low-dimensional method

Include Bias, Diurnal and State-Dependent model errors:

T

2
model error = b + Zﬁn,lel
[=1

Having a large number of estimated errors Eallows to
estimate the global model error beyond the bias

o4



SPEEDY 6 hr model errors against NNR (diurnal cycle)

Leading EOFs for 925 mb TEMP
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